本來生活中的新荷是放在生活大小事的相本中,但最近發現要找先前買過的東西已經記不得樣子,也找不太到照片(被其他照片埋沒了= =")所以獨立一本方便紀錄,不過因為沒辦法逐一拍攝日常生活的買物,僅有覺得不錯&有紀念性的東西才PO嚕~
上一頁下一頁
  • 2024.01.Canda Goose羽絨外套

    2024.01.Canda Goose羽絨外套

  • 2023.12.買給自己的聖誕禮物-雙面披肩 : )

    2023.12.買給自己的聖誕禮物-雙面披肩 : )

  • 2023.11.28.多年來一直偏愛Anywhere3的滑鼠,使用起來很順手。

    2023.11.28.多年來一直偏愛Anywhere3的滑鼠,使用起來很順手。

  • 2023.12.09.全館93折+滿額贈 (這單的滿額贈有拿到海灘袋&掛繩祖,拍的時候漏掉了)

    2023.12.09.全館93折+滿額贈 (這單的滿額贈有拿到海灘袋&掛繩祖,拍的時候漏掉了)

  • 2023.11. Simmpo 抗藍光保護貼、光學鏡頭貼。

    2023.11. Simmpo 抗藍光保護貼、光學鏡頭貼。

  • 等了近3週才收到的手機殼(也太久)

    等了近3週才收到的手機殼(也太久)

  • 由於iPhone 15 系列以Type-C連接埠取代過去的Lightning...。

    由於iPhone 15 系列以Type-C連接埠取代過去的Lightning...。

  • 2023.補紀錄。

    2023.補紀錄。

  • 2023.08.小皮件。

    2023.08.小皮件。

  • 2023.08. BAO BAO

    2023.08. BAO BAO

  • 2023.07.原本用了N年的自拍棒退役了, 歡迎新夥伴加入。

    2023.07.原本用了N年的自拍棒退役了, 歡迎新夥伴加入。

  • 2023.07. Light SPA

    2023.07. Light SPA

  • 2023.07.訂製了一件西外,等了近3個月終於收到了。

    2023.07.訂製了一件西外,等了近3個月終於收到了。

  • 2023.06.五合一行動電源。

    2023.06.五合一行動電源。

  • 2023.05.行動電源。

    2023.05.行動電源。

  • 2023.05. 尋覓了N個月終於迎來了新眼鏡。

    2023.05. 尋覓了N個月終於迎來了新眼鏡。

  • 2023.03.08

    2023.03.08

  • 2023.02.Panasonic EH-NA0J 吹風機。

    2023.02.Panasonic EH-NA0J 吹風機。

  • 2023.02.終於買到日本大衣。

    2023.02.終於買到日本大衣。

  • 2023.01. Aurai 酷熱敷水波式按摩眼罩(冷熱敷)

    2023.01. Aurai 酷熱敷水波式按摩眼罩(冷熱敷)

  • 2022.12.ipad Air保護套。

    2022.12.ipad Air保護套。

  • 2022.12.05.黑森林純菁精油禮盒

    2022.12.05.黑森林純菁精油禮盒

  • 2022.11.趁著10、11月的優惠補貨。

    2022.11.趁著10、11月的優惠補貨。

  • 2022.11.(左邊是新的/右邊是舊的)

    2022.11.(左邊是新的/右邊是舊的)

  • 2022.06.21. Panasonic-EW-DJ54超聲波沖牙機

    2022.06.21. Panasonic-EW-DJ54超聲波沖牙機

  • 2022.06.16.為了新品防蚊液。

    2022.06.16.為了新品防蚊液。

  • 純萃防蚊噴霧本人。

    純萃防蚊噴霧本人。

  • 20220.05.23.我的餐廚愛牌:Le Creuset。

    20220.05.23.我的餐廚愛牌:Le Creuset。

  • 可愛的貝殼盤(中)

    可愛的貝殼盤(中)

  • 超可愛的幸運圖騰醬料碟。

    超可愛的幸運圖騰醬料碟。

  • 經典花型盤(中)

    經典花型盤(中)

  • 2022.05.19. Erwachen

    2022.05.19. Erwachen

  • 這次另外帶了新品:纖絡熱感按摩油用看看。

    這次另外帶了新品:纖絡熱感按摩油用看看。

  • 2022.05.09.Erwachen。

    2022.05.09.Erwachen。

  • 我很愛白色聖誕純菁的味道。

    我很愛白色聖誕純菁的味道。

  • 2022.05.06.今年的母親節禮物-The Rucksack尼龍拼皮革後背包(中款)

    2022.05.06.今年的母親節禮物-The Rucksack尼龍拼皮革後背包(中款)

  • 2022.04.06.清明連假後的第一個上班日。

    2022.04.06.清明連假後的第一個上班日。

  • 紀錄一下2022年的款式。

    紀錄一下2022年的款式。

  • 2022.03.20.法國 VEJA 經典小白鞋

    2022.03.20.法國 VEJA 經典小白鞋

  • 2022.03. Swiss Diamond 鑽石鍋(中華炒鍋32cm)

    2022.03. Swiss Diamond 鑽石鍋(中華炒鍋32cm)

  • 2022.02.21.水晶擴香組。

    2022.02.21.水晶擴香組。

  • 2022.02.18. ERWACHEN

    2022.02.18. ERWACHEN

  • 2022.01.24.

    2022.01.24.

  • 2022.01.13. ERWACHEN

    2022.01.13. ERWACHEN

  • 2022.買給自己的新年禮物。

    2022.買給自己的新年禮物。

  • 2021.12.23. ERWACHEN

    2021.12.23. ERWACHEN

  • 滿額贈送的紅包袋。

    滿額贈送的紅包袋。

  • 2021.12.15. 28A

    2021.12.15. 28A

  • 2021.12.很逗的手機座。

    2021.12.很逗的手機座。

  • 2021.12.07. ERWACHEN

    2021.12.07. ERWACHEN

  • 戀人純菁的味道很奇妙...

    戀人純菁的味道很奇妙...

  • 2021.11.22. INNA ORGANIC 乳香撫紋潤唇精華

    2021.11.22. INNA ORGANIC 乳香撫紋潤唇精華

  • 2021.11.19. ORIGINS

    2021.11.19. ORIGINS

  • 2021.11.03. i phone 13 pro手機殼。

    2021.11.03. i phone 13 pro手機殼。

  • 2021.11.生活雜貨小補貨。

    2021.11.生活雜貨小補貨。

  • 2021.09.15.橙花向日葵面膜。

    2021.09.15.橙花向日葵面膜。

  • 2021.09.09.完全是為了這組很划算的橙花純菁+恬凈溫和卸妝油。

    2021.09.09.完全是為了這組很划算的橙花純菁+恬凈溫和卸妝油。

  • 2021.08.31.

    2021.08.31.

  • 2021.07. 26. AZ金爪抓夾。

    2021.07. 26. AZ金爪抓夾。

  • 2021.07.23. Airbanco K 空氣清淨機。

    2021.07.23. Airbanco K 空氣清淨機。

  • 2021.07.Heima Living寢具。

    2021.07.Heima Living寢具。

  • 收到包裹時商品好好地包裝著,該附的說明也沒有少 :)

    收到包裹時商品好好地包裝著,該附的說明也沒有少 :)

  • 2021.05.22.新品:橙花向日葵極光淨白精華。

    2021.05.22.新品:橙花向日葵極光淨白精華。

  • 2021.05.17.Erwachen

    2021.05.17.Erwachen

  • 2021.05.05.主要是因為要補淨息純菁...

    2021.05.05.主要是因為要補淨息純菁...

  • 額外贈送的黑米。

    額外贈送的黑米。

  • 2021.04.Kiehl's 金盞花系列。

    2021.04.Kiehl's 金盞花系列。

  • 2021.03.31.完全是為了再補淨息純菁。

    2021.03.31.完全是為了再補淨息純菁。

  • 這次順便帶了一組調香組。

    這次順便帶了一組調香組。

  • 2021.03.15.大小乖乖呵護組。

    2021.03.15.大小乖乖呵護組。

  • 購物袋是組合內含的。

    購物袋是組合內含的。

  • 側邊也還有扣子。

    側邊也還有扣子。

  • 底部感覺也很厚實,不會軟趴趴的。

    底部感覺也很厚實,不會軟趴趴的。

  • 2021.03.09.補貨面膜及膠囊。

    2021.03.09.補貨面膜及膠囊。

  • 2021.02.27.

    2021.02.27.

  • 2021.02. BRUNO x 嚕嚕米Moomin 聯名款多功能電烤盤。

    2021.02. BRUNO x 嚕嚕米Moomin 聯名款多功能電烤盤。

  • 另外一個角度。

    另外一個角度。

  • 章魚燒烤盤、平底盤、六格盤、木匙。

    章魚燒烤盤、平底盤、六格盤、木匙。

  • 最可愛的是這個有嚕嚕米的6格烤盤。

    最可愛的是這個有嚕嚕米的6格烤盤。

  • 2021.02.19.

    2021.02.19.

上一頁下一頁

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

其他選項
  • 顏亘
    顏亘 2020/12/09 06:11


    Physicists capture the sound of a “perfect” fluid
    The results should help scientists study the viscosity in neutron stars, the plasma of the early universe, and other strongly interacting fluids.
    Jennifer Chu | MIT News Office
    Publication Date:
    December 3, 2020
    Press Inquiries
    sound graph
    Caption:
    Scientists have captured the sound of a “perfect fluid,” which flows with the smallest amount of friction allowed by the laws of quantum mechanics.
    Credits:
    Image: Christine Daniloff, MIT

    For some, the sound of a “perfect flow” might be the gentle lapping of a forest brook or perhaps the tinkling of water poured from a pitcher. For physicists, a perfect flow is more specific, referring to a fluid that flows with the smallest amount of friction, or viscosity, allowed by the laws of quantum mechanics. Such perfectly fluid behavior is rare in nature, but it is thought to occur in the cores of neutron stars and in the soupy plasma of the early universe.

    Now MIT physicists have created a perfect fluid in the laboratory, and found that it sounds something like this:

    This recording is a product of a glissando of sound waves that the team sent through a carefully controlled gas of elementary particles known as fermions. The pitches that can be heard are the particular frequencies at which the gas resonates like a plucked string.

    The researchers analyzed thousands of sound waves traveling through this gas, to measure its “sound diffusion,” or how quickly sound dissipates in the gas, which is related directly to a material’s viscosity, or internal friction.

    Surprisingly, they found that the fluid’s sound diffusion was so low as to be described by a “quantum” amount of friction, given by a constant of nature known as Planck’s constant, and the mass of the individual fermions in the fluid.

    This fundamental value confirmed that the strongly interacting fermion gas behaves as a perfect fluid, and is universal in nature. The results, published today in the journal Science, demonstrate the first time that scientists have been able to measure sound diffusion in a perfect fluid.

    Scientists can now use the fluid as a model of other, more complicated perfect flows, to estimate the viscosity of the plasma in the early universe, as well as the quantum friction within neutron stars — properties that would otherwise be impossible to calculate. Scientists might even be able to approximately predict the sounds they make.

    “It’s quite difficult to listen to a neutron star,” says Martin Zwierlein, the Thomas A. Frank Professor of Physics at MIT. “But now you could mimic it in a lab using atoms, shake that atomic soup and listen to it, and know how a neutron star would sound.”

    While a neutron star and the team’s gas differ widely in terms of their size and the speed at which sound travels through, from some rough calculations Zwierlein estimates that the star’s resonant frequencies would be similar to those of the gas, and even audible — “if you could get your ear close without being ripped apart by gravity,” he adds.

    Zwierlein’s co-authors are lead author Parth Patel, Zhenjie Yan, Biswaroop Mukherjee, Richard Fletcher, and Julian Struck of the MIT-Harvard Center for Ultracold Atoms.

    Tap, listen, learn

    To create a perfect fluid in the lab, Zwierlein’s team generated a gas of strongly interacting fermions — elementary particles, such as electrons, protons, and neutrons, that are considered the building blocks of all matter. A fermion is defined by its half-integer spin, a property that prevents one fermion from assuming the same spin as another nearby fermion. This exclusive nature is what enables the diversity of atomic structures found in the periodic table of elements.

    “If electrons were not fermions, but happy to be in the same state, hydrogen, helium, and all atoms, and we ourselves, would look the same, like some terrible, boring soup,” Zwierlein says.

    Fermions naturally prefer to keep apart from each other. But when they are made to strongly interact, they can behave as a perfect fluid, with very low viscosity. To create such a perfect fluid, the researchers first used a system of lasers to trap a gas of lithium-6 atoms, which are considered fermions.

    The researchers precisely configured the lasers to form an optical box around the fermion gas. The lasers were tuned such that whenever the fermions hit the edges of the box they bounced back into the gas. Also, the interactions between fermions were controlled to be as strong as allowed by quantum mechanics, so that inside the box, fermions had to collide with each other at every encounter. This made the fermions turn into a perfect fluid.

    “We had to make a fluid with uniform density, and only then could we tap on one side, listen to the other side, and learn from it,” Zwierlein says. “It was actually quite diffult to get to this place where we could use sound in this seemingly natural way.”

    “Flow in a perfect way”

    The team then sent sound waves through one side of the optical box by simply varying the brightness of one of the walls, to generate sound-like vibrations through the fluid at particular frequencies. They recorded thousands of snapshots of the fluid as each sound wave rippled through.

    “All these snapshots together give us a sonogram, and it’s a bit like what’s done when taking an ultrasound at the doctor’s office,” Zwierlein says.

    In the end, they were able to watch the fluid’s density ripple in response to each type of sound wave. They then looked for the sound frequencies that generated a resonance, or an amplified sound in the fluid, similar to singing at a wine glass and finding the frequency at which it shatters.

    “The quality of the resonances tells me about the fluid’s viscosity, or sound diffusivity,” Zwierlein explains. “If a fluid has low viscosity, it can build up a very strong sound wave and be very loud, if hit at just the right frequency. If it’s a very viscous fluid, then it doesn’t have any good resonances.”

    From their data, the researchers observed clear resonances through the fluid, particularly at low frequencies. From the distribution of these resonances, they calculated the fluid’s sound diffusion. This value, they found, could also be calculated very simply via Planck’s constant and the mass of the average fermion in the gas.

    This told the researchers that the gas was a perfect fluid, and fundamental in nature: Its sound diffusion, and therefore its viscosity, was at the lowest possible limit set by quantum mechanics.

    Zwierlein says in addition to using the results to estimate quantum friction in more exotic matter, such as neutron stars, the results can be helpful in understanding how certain materials might be made to exhibit perfect, superconducting flow.

    “This work connects directly to resistance in materials,” Zwierlein says. “Having figured out what’s the lowest resistance you could have from a gas tells us what can happen with electrons in materials, and how one might make materials where electrons could flow in a perfect way. That’s exciting.”

    This research was supported, in part, by the National Science Foundation and the NSF Center for Ultracold Atoms, the Air Force Office of Scientific Research, the Office of Naval Research, and the David and Lucile Packard Foundation.
    Share this news article on:

    Twitter
    Facebook
    LinkedIn
    Reddit

    Print

    Press Mentions
    WGBH

    Prof. Martin Zwierlein speaks with Edgar Herwick III of WGBH Radio about his work capturing the sound of a “perfect” fluid. "It was a beautiful sound," says Zwierlein. "It was a quantum sound. In a way it was the most long-lasting sound that you can imagine given the laws of quantum mechanics.”
    Full story via WGBH →
    New Scientist

    New Scientist reporter Abigail Beall spotlights how MIT researchers have listened to sound waves traveling through a "perfect" fluid, which could shed light on the resonant frequencies within a neutron star. “The quality of the resonances tells me about the fluid’s viscosity, or sound diffusivity,” says Prof. Martin Zwierlein. “If a fluid has low viscosity, it can build up a very strong sound wave and be very loud, if hit at just the right frequency. If it’s a very viscous fluid, then it doesn’t have any good resonances.”
    Full story via New Scientist →
    Related Links

    Martin Zwierlein
    Research Laboratory of Electronics
    MIT-Harvard Center for Ultracold Atoms
    Department of Physics
    School of Science

    Related Topics

    Light
    Photonics
    Physics
    Research
    Research Laboratory of Electronics
    School of Science
    National Science Foundation (NSF)

相簿列表資訊

最新上傳:
2024/03/14
全站分類:
隨手拍拍
本日人氣:
0
累積人氣:
10049